Achieving high-current carbon nanotube emitters.

نویسندگان

  • Eric Minoux
  • Oliver Groening
  • Kenneth B K Teo
  • Sharvari H Dalal
  • Laurent Gangloff
  • Jean-Philippe Schnell
  • Ludovic Hudanski
  • Ian Y Y Bu
  • Pascal Vincent
  • Pierre Legagneux
  • Gehan A J Amaratunga
  • William I Milne
چکیده

When a carbon nanotube emitter is operated at high currents (typically above 1 microA per emitter), a small voltage drop ( approximately few volts) along its length or at its contact generates a reverse/canceling electric field that causes a saturation-like deviation from the classical Fowler-Nordheim behavior with respect to the applied electric field. We present a correction to the Fowler-Nordheim equation to account for this effect, which is experimentally verified using field emission and contact electrical measurements on individual carbon nanotube emitters. By using rapid thermal annealing to improve both the crystallinity of the carbon nanotubes and their electrical contact to the substrate, it is possible to reduce this voltage drop, allowing very high currents of up to 100 microA to be achieved per emitter with no significant deviation from the classical Fowler-Nordheim behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-chip electron-impact ion source using carbon nanotube field emitters

Articles you may be interested in Fabrication and characterization of single carbon nanotube emitters as point electron sources Appl. Source brightness and useful beam current of carbon nanotubes and other very small emitters Carbon nanotubes synthesized by biased thermal chemical vapor deposition as an electron source in an x-ray tube Appl. On-chip vacuum microtriode using carbon nanotube fiel...

متن کامل

Highly stable carbon nanotube field emitters on small metal tips against electrical arcing

Carbon nanotube (CNT) field emitters that exhibit extremely high stability against high-voltage arcing have been demonstrated. The CNT emitters were fabricated on a sharp copper tip substrate that produces a high electric field. A metal mixture composed of silver, copper, and indium micro- and nanoparticles was used as a binder to attach CNTs to the substrate. Due to the strong adhesion of the ...

متن کامل

High Current Cold Electron Source Based on Carbon Nanotube Field Emitters and Electron Multiplier Microchannel Plate

In this work, we report the synthesis and field emission properties of carbon nanotube multistage emitter arrays, which were grown on porous silicon by catalytic thermal chemical vapor deposition. The emitter structure consisted of arrays of multiwall nanotubes (MWNTs) on which single/thin-multiwall nanotubes were grown. The structure was confirmed by TEM and Raman analysis. Higher field emissi...

متن کامل

Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission

A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-termi...

متن کامل

Field Emission from Lateral Multiwalled Carbon Nanotube Yarn Emitters

A field emission from a lateral emitter made by a multiwalled carbon nanotube (MWCNT) yarn was investigated. The lateral emitter showed an excellent field emission performance with a low turn-on electric field of 1.13 V/μm at an emission current of 1 μA, high emission current of 0.2 mA at an applied voltage of 700 V, and longtime emission stability for over 20 h without any significant current ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 5 11  شماره 

صفحات  -

تاریخ انتشار 2005